	
	PowerShell Study Notes

Table of Contents
Introduction	3
UI	3
Aliases	3
Basic Commands	4
Get-Command	4
Get-Help	4
Get-ChildItems	4
Set-Location	4
Clear-Host	4
Piping Commands	5
Providers	5
Variables	6
Variable Types	6
Comparisons	7
Implicit Type Conversion	7
Strings	8
String Interpolation	8
String Formatting	8
Wildcards	8
Arrays	9
Hash Tables	9
Common Built-in Variables	10
Branching	10
If Statement	10
Switch Statement	11
Looping	11
Script Blocks	12
Functions	13
Comments	13
Adding Help to Functions	13
Error Handling	14
Working with Files	14

[bookmark: _Toc307838332]Introduction
DOS was a command-line based operating system. CMD lived on when Windows replaced DOS. CMD was long overdue for replacement and PowerShell does exactly that.
PowerShell is based .NET and everything is a .NET object.
Commands in PowerShell are named “Cmdlets” (Command-lets).
PowerShell commands have a Verb-Noun syntax.
Verbs like: Get, Set, Out, Start, Stop, Restart, Add.
Nouns like: Help, Command, Service, Computer, Location, ChildItems.
[bookmark: _Toc307838333]UI
Use can access PowerShell through:
· PowerShell Window: just like CMD but for PowerShell.
· PowerShell ISE (Integrated Scripting Environment): helps with writing and executing scripts along with typing regular commands. Better alternative to the PowerShell Window.
· Console2: if you’re a fan of Console2 you can use it for PowerShell. Here’s how you can do that.
[bookmark: _Toc307838334]Aliases
DOS and Linux commands work in PowerShell through Aliases.
PowerShell can accept aliases to its commands. For example these three commands are the same:
· Dir (DOS)
· LS (Linux)
· Get-ChildItems (PowerShell)
To find list of aliases use: Get-Alias
To create an alias use: Set-Alias <Alias> <PowerShell-Command>
Example: Set-Alias List Get-ChildItems
Aliases live as long as the PowerShell window is open.
To export the aliases list to a file (CSV is the export format) use the command:
Export-Alias <Path-To-CSV-File> <Command-Filter>
The command filter is optional.
To import the file back to PowerShell use: Import-Alias <Path-To-CSV-File>
[bookmark: _Toc307838335]Basic Commands
[bookmark: _Toc307838336]Get-Command
Gets all the PowerShell commands.
Example:
· Get-Command
· Get-Command –verb “get”
· Get-Command –noun “service”
[bookmark: _Toc307838337]Get-Help
Gets basic information about Cmdlets and other elements of PowerShell commands.
Format: Get-Help <Command> -<Optional-Parameter>
Example:
· Get-Help Get-Command
· Get-Help Get-Command –examples
· Get-Help Get-Command –detailed
· Get-Help Get-Command –full
[bookmark: _Toc307838338]Get-ChildItems
Lists sub items under the current location.
Example: Get-ChildItems
[bookmark: _Toc307838339]Set-Location
Changes the current path whether it’s a directory or tree of objects.
Format: Set-Location “<New-Location>”
Example:
· Set-Location C:\Windows
· Set-Location “C:\Program Files”
[bookmark: _Toc307838340]Clear-Host
Clears the screen.
[bookmark: _Toc307838341]Piping Commands
In PowerShell, “Piping” is the process of chaining commands so that the output of the first command can be channeled as an input to the second command whose output will be the input of the third command and so forth.
The name comes from the pipe symbol “|” (usually Shift + the key above the left Enter) used to separate commands.
Example:
· Get-ChildItems | where-object { $_.Length –gt 100kb }
The pipe takes the output of the “Get-ChildItems” and passes it to the “Where-Object” command which prints out the result of files that have length greater than 100 KB.
When writing piped commands on multiple lines you have to end each line with the pipe symbol (except the last line which ends with the last command).
[bookmark: _Toc307838342]Providers
PowerShell uses providers which provide access to data and components that
would not otherwise be easily accessible at the command line. The data
is presented in a consistent format that resembles a file system drive (Source).
To list PowerShell providers use: Get-PSProvider
We connect to PowerShell Providers by mounting the Providers PowerShell Drive (PSDrive). Most Providers have only one PSDrive, the exceptions are the FileSystem Provider (depends on the number of drives on the system) and the Registry Provider (HKLM and HKCU) (Source).
To list PowerShell drives use: Get-PSDrive
To move/switch to a certain drive use: Set-Location <PSDrive>:
Example: Set-Location Env:
To get a list of currently loaded Snap-ins use: Get-PSSnapIn
To get a list of Snap-ins that are registered but not currently loaded use: Get-PSSnapIn -Registered
To add a snap-in use: Add-PSSnapin <Snap-In-Name>
Adding a snap-in will add a new drive that you can navigate to. For example, adding the “SqlServerCmdletSnapin100” snap-in will add the “SQL” drive.
To remove a snap-in use: Remove-PSSnapIn <Snap-In-Name>
[bookmark: _Toc307838343]Variables
To create a variable just put a dollar sign ($) before the name of the variable and assign a value to it.
Example: $hi = “Hello World”
This is a shortcut for using the “New-Variable” cmdlet. You can use the long form.
Example: New-Variable –Name hi –Value “Hello World”
To assign a value to an existing variable, use the Set-Variable cmdlet.
Example: Set-Variable –Name hi –Value 5
To print out a variables value, just write the name of the variable after a dollar sign.
Example: $hi
To clear the content of a variable (like setting it to Null), use the Clear-Variable cmdlet.
Example: Clear-Variable –Name hi
This is a shortcut for using the “Write-Host” cmdlet. You can use the long form.
Example: Write-Host $hi
It’s also a shortcut for using the “Get-Variable” cmdlet. You can use the long form.
Example: Get-Variable hi –valueonly
The cmdlet Get-Variable (without any parameters) will list all the variables in PowerShell.
To remove a variable from memory, use the Remove-Variable cmdlet.
Example: Remove-Variable –Name hi
[bookmark: _Toc307838344]Variable Types
To Get type of a variable use: <Variable-Name>.GetType()
Example: $hi.GetType()
PowerShell types are mutable. Assigning an integer value to a variable holding a string will change the type of the variable from string to integer.
You can declare a variable and assign a specific type to it. This will cause PowerShell to throw an error if you assign a wrong type of value to it.
To declare the type of a variable, write the .NET full name of the type before the variable name in square brackets.
Example: [System.Int32]$myint = 42
[bookmark: _Toc307838345]Comparisons
PowerShell doesn’t use symbols for comparisons. Instead it uses short acronyms following a dash.
	Greater Than
	-gt

	Less Than
	-lt

	Equal To
	-eq

	Not Equal To
	-ne

	Greater Than or Equal
	-ge

	Less Than or Equal
	-le

	Like
	-like

	Not Like
	-NotLike

	Match based on regular expressions
	-Match

	Non-match based on regular expresions
	-NonMatch

Calculations are like any other language. You can use +, -, ++, -- and /
[bookmark: _Toc307838346]Implicit Type Conversion
PowerShell converts types implicitly which can be very helpful. However, it can cause confusion when applied to comparisons.
When performing a comparison between two different types, PowerShell will convert the variable on the right side to the type of the variable on the left side to be able to perform the comparison. In this comparison:
“42” –eq 42
The 42 on the right is an integer but the one on the left is a string. To compare the two, PowerShell will convert the integer to string, resulting in “42” which matches the value on the left. This comparison will result into True.
However, this comparison:
“042” –eq 42
The 42 on the right will be converted to the string “42” which is NOT equal to the string “042”. This will result into False. But if you switch the sides like this:
42 –eq “042”
The string “042” will be converted to the integer 42 which will match the left side. This will result into True.
Implicit type conversion makes comparison in PowerShell a bit tricky, so watch out.

[bookmark: _Toc307838347]Strings
You can single quotes or double quotes around strings.
The escape character in PowerShell is the backtick (left to the 1 key and below the Esc key).
Some escape sequences:
	Backspace
	`b

	New Line
	`n

	Carriage Return
	`r

	Carriage Return Line Feed
	`r`n

	Tab
	`t

A “Here String” is a way of writing text on multiple lines. Use (@”) before the lines of text and (@”) after the text. Make sure that each symbol is on its own line and is not mixed with the text.
	Correct
	Incorrect

	$heretext = @”
Some text here
More text here

Blank line above
“@
	$heretext = @”
Some text here
More text here

Blank line above“@

[bookmark: _Toc307838348]String Interpolation
PowerShell can replace variables with their values when printing out strings.
To display the name of the variable instead of its value, add a backtick before the name of the variable.
Example: “The value of `$hi is $hi” will result in The value of $hi is Hello World
[bookmark: _Toc307838349]String Formatting
You can format strings just like you do in .NET using the String.Format method.
Example: [string]::Format(“There are {0} items.”, $items)
Or using the PowerShell shortcut
Example: “There are {0} items.” –f $items
[bookmark: _Toc307838350]Wildcards
Here are some wildcards to be used with the –like and –match string comparisons:
	*
	Any number of any character

	?
	Only one of any character

	*[a-z]
	Any number of characters from a to z

	*[c-g]
	Any number of characters from c to g

	*[1-9]
	Any number of characters from 1 to 9

	*[4-8]
	Any number of characters from 4 to 8

	[4-8]{2}
	Only 2 characters from 4 to 8

	[c-g]{3}
	Only 3 characters from c to g

[bookmark: _Toc307838351]Arrays
To assign an array, simple list all the values separated by a comma.
Example: $array = “value1”, “value2”
Arrays are zero-based. To access the first value, use the index zero.
Example: $array[0]
To create an empty array, use the following syntax:
$array = @()
This syntax can also be used to create an array:
$array = @(“value1”, “value2”)
You can create an array of numeric range with this shortcut:
$array = 2..8
To check if an item exists in an array, use the –Contains <Value-To-Check-For>
Example: $array –contains “value3”
[bookmark: _Toc307838352]Hash Tables
Hash tables are the PowerShell equivalent of .NET dictionaries.
To create a hash table, use this syntax:
$hashtable = @{“Key1” = “Value1”; “Key2” = “Value2”; “key3” = “value3”}
To get a single value, use a syntax similar to getting a value from an array:
$hashtable[“Key1”]
Or you can use this: $hashtable.”Key1”
The value “Key1” can be replaced by a variable or expression which will be evaluated and replaced with the correct value before getting the key value from the hash table.
To remove a key from table, use $<TableName>.Remove(“<KeyName>”)
Example: $hashtable.Remove(“Key1”)
You can search in keys or values:
Example:
· $hashtable.keys – contains “key1” OR $ hashtable.Contains(“key1”)
· $hashtable.values –contains “value1” OR $ hashtable.ContainsValue(“value1”)
You can list all the keys using $<TableName>.Keys
You can list all the values using $<TableName>.Values
[bookmark: _Toc307838353]Common Built-in Variables
	$true
	True value

	$false
	False value

	$pwd
	Current directory

	$home
	User’s home directory

	$host
	Info about the user’s machine

	$pid
	Process ID

	$PSVersionTable
	Info about the current version of PowerShell

	$_
	Current object

[bookmark: _Toc307838354]Branching
[bookmark: _Toc307838355]If Statement
If statements are very similar to those in .NET (C# to be specific) except it doesn’t support “Else if”. Here’s an example:
If ($hi –eq “Hello”)
{
“It equals Hello”
}
Else
{
	If ($hi –eq “Hi”)
	{
		“It equals Hi”
}
Else
{
“It’s something else”
}
}
[bookmark: _Toc307838356]Switch Statement
Also simple:
Switch ($hi)
{
“Hello” { “It’s Hello”; break }
“Hi” { “It’s hi”; break }
Default { “Something else” }
}
Make sure to break to skip matching the next values in the list, otherwise it will continue down the list which is a waste of time.
[bookmark: _Toc307838357]Looping
You can loop using multiple commands including the While command:
$i = 1
While ($i – le 5)
{
“`$i = $i”
$i = $i + 1
}
The Do While Command:
Do
{
“`$i = $i”
$i++
} While ($i – le 5)
The Do Until Command:
Do
{
“`$i = $i”
$i++
} Until ($i – le 5)
The Do While command works (goes through another loop) if the command is true. The Do Until command works (goes through another loop) if the command is false.
The For command works for a specific number of times:
For ($f =0; $f –le 5; $f++)
{
“`$i = $i”
}
The For Each command loops over the items in an array:
Foreach ($item in $array)
{
“`item = $item”
}
[bookmark: _Toc307838358]Script Blocks
A script block is the code inside curly brackets.
To put multiple commands on a single line user the semi-colon to separate them.
Writing a script block on its own will not execute it, but will just print it out.
{Clear-Host; “Hello World”}
To execute a script block, you need to add “&” before the script block.
& {Clear-Host; “Hello World”}
You can store a script block in a variable
$script = {Clear-Host; “Hello World”}
Within a script block, you can use the Return command to stop the execution and exit the script block. Nothing after the Return command will be executed.
Script blocks can accept parameters using the $args array.
Script blocks can accept parameters using the param command to make a list of input parameters.
$script = {
Param ($my1param, $my2param)
“Here are the two input parameters: $my1param and $my2param”
}
When calling (executing) the script block, you can pass the parameters by order or by name:
& $script –my1param “Parameter1” –my2param “Parameter2”
Or you can just pass enough characters of the name to make it unique
& $script –my1 “Parameter1” –my2 “Parameter2”
A script block can use the Process, Being, and End commands.
The Process command forces the execution of a script block within the script block.
The Begin command executes a script block before any other Process commands.
The End command executes a script block after any other Process commands.
Begin, Process, and End commands are usually used with PowerShell Pipeline.
[bookmark: _Toc307838359]Functions
A function is a script block with a name.
Function Get-Total ($n1, $n2)
{
Write-Host ($n1 + $n2)
}
Variables are passed to functions by value (ByVal in .NET). You can pass variables by reference using this syntax:
Function Get-Total([ref] $n1, [ref] $n2)
When calling this function, you must also use [ref] in the call.
Get-Total([ref] $myN1, [ref] $myN2)
Functions can have switches to control additional functionality. To enable switches, use the keyword [switch] before the function parameter just like you would use the [ref].
To enable a switch when calling a function, add the name of the switch after a dash like <FunctionName> -<SwitchName>
[bookmark: _Toc307838360]Comments
To add a comments block in PowerShell, start with <# and end with #>.
[bookmark: _Toc307838361]Adding Help to Functions
To add help to PowerShell functions, start a comments block and add special words for the different help sections you want to support. Here are some of them:
	.SYNOPSIS
	A brief description of the command

	.DESCRIPTION
	Detailed description

	.PARAMETER name
	Description of each parameter

	.EXAMPLE
	Detailed example of how to use the command

	.INPUTS
	What pipeline inputs are supported

	.OUTPUTS
	What this function outputs

	.NOTES
	Any extra notes

	.LINK
	A URL for more info

You can use the command Get-Help About_Comment_Based_Help for help on how to add help to functions.
[bookmark: _Toc307838362]Error Handling
To catch errors in a function, use the keyword Trap at the end of the function and execute a script block that handles the error.
Example:
Function FuncWithError()
{
	<# Do something here that might throw an error #>
	Trap
	{
		Write-Host “An error occurred”
		Write-Host $_.ErrorID
		Write-Host $_.Exception.Message
		Continue
	}
}
Continue will to move the line after the line that caused the error.
Break will exit the function in case an error occurred after executing the error handling script block. Break will also throw the exception to the parent script block.
You can build Trap script blocks in the same way you build Catch statements in .NET where you can specify a certain exception you want to catch.
Trap [System.StackOverflowException]
[bookmark: _Toc307838363]Working with Files
To get the content of a file, use the Get-Content command.
The content of a file can be stored in a variable. This variable would be of type Array where each line of the file is an element in the array.
To change the content of a file, use the Set-Content command.
Set-Content –Value $ContentArray –Path FileName.txt
To add content to an already existing file, use the Add-Content command.
Add-Content –Value $ContentArray –Path FileName.txt
	1
	

